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Control of Phase Change Heat Transfer 

 Boiling heat transfer for high-power, dense 

electronic systems

 Heat transfer is limited by two primary 

processes
» Vapor formation and removal rates (critical heat flux)

» Condensation rate

 Boiling and condensation present different 

design challenges
» Boiling: increase CHF, decrease surface superheat

» Condensation: enhance in bulk fluid for efficient 

thermal packaging

 Acoustic control of 2-phase boiling processes
» At heater surface control of vapor growth, spreading, 

and advection
 Surface force engendered by high-frequency 

ultrasound

 Used in conjunction with complex boiling geometries

» In bulk fluid control of condensation
 Acoustic actuation couples to surface Faraday waves 

or via radiation pressure force and droplet ejection

 Pool boiling and nozzle condensation geometries

Boiling

Condensation

1 mm
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Acoustic Actuation of Liquid/Gas Interface

 Interfacial coupling varies substantially with 
actuation wavelength

 Ultrasonic [O(1 MHz)] liquid/gas interfacial actuation
» Short actuation wavelength [O(1 mm)]

 Exploits acoustic surface force to effect interfacial 
deformations and injection of a liquid jet and droplets 

» lacoust = 0.9 mm;  Dres = 2 mm;  lcapillary = O(mm)

» Impedance mismatch
 Zvapor/Zwater=1.8x10-4

» High acoustic absorption coefficient
 aH2Ovapor  1,000 aH2Oliquid

» Amplitude = 6.82∙103 kPa peak-to-peak

» Forcing affects vapor bubbles larger than Dres

 O(1 kHz) liquid/gas interfacial actuation
» Long actuation wavelength [O(1 m)] 

 Much larger than the characteristic length scale of the 
vapor bubbles [O(5-10 mm)]

 Forces capillary surface waves to enhance mixing of the 
interfacial thermal boundary layer

» lacoust = 1.5 m;  Dres = 5.5 mm;  lcapillary = O(mm)
 Significant disturbances

» Amplitude = 5 kPa peak-to-peak
» Bjerknes body forces affect bubble’s path

Video Presented Here

Video Presented Here
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Acoustically Controlled Boiling: 

Experimental Setup

 Heated surface design
» Cartridge heater and thermocouples

» Exchangeable heater surfaces
 Plain

 Plain, instrumented with surface-soldered 

thermocouples

 Microchannel grid
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Ultrasonic Control of Vapor at Surface

High-frequency acoustic actuation
» Increases surface temperature (7 oC)

 Detaches small scale vapor bubbles

 Suppresses vaporization process at most nucleation 
sites

» Increases CHF by 65%
 Agreement with wire experiments of Isakoff (1956)

Surface Temperature

110

183

Vapor removal at surface

50 W/cm2

Video Presented Here
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Effect of Actuator Incidence Angle
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microChannel Design: More than Surface Area

Dimpled

200400 1000 

Smooth microChannels

0

200

400

10 20 30

q’’ (W/cm2)

Ts - Tsat (oC)
10 20 30

Normalized by projected area Normalized by wetted area

 

 

CHF (W/cm2)

w/D
0 0.1 0.3

100

200

300

(plain)

(400 mm)

(200 mm)

(1000 mm)

0.2

approx. same wetted area 



Fluid Mechanics Research Laboratory 10

0

250

500

10 20 30

Surface mChannels with Ultrasonic Actuation

mChannel Actuated (1.7 MHz)

100

200

300

110

350

183

1 mm

460

q
’’

(W
/c

m
2
)

Ts - Tsat (oC)

Smooth

Small-scale acoustic actuation within 
mChannels

» Decreases surface temperature (~ 7 oC).

» Increased power dissipation DP  200 
W/cm2 at Ts - Tsat =17 oC

» Increases CHF by 31%

» Decreases surface temperature 
fluctuations.

» Increase CHF by 318% relative to smooth, 
unactuated case
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O(1 kHz) Acoustic Enhancement of Boiling

 Marginal increase in CHF (16%)

 Decrease in surface superheat of ~1 oC

 Appearance of vapor is markedly 
different due to surface capillary waves

» Increased condensation has minimal effect 
on boiling process
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Acoustic Control of Vapor Condensation

 Pool boiling and condensers both 

require enhanced condensation
» Pool boiling used in heat sink applications

 Vapor boils and condenses in close proximity

» Condensers used in power cycles
 Vapor is injected; boiling occurs in separate 

boiler component

 Nozzle geometry interacts with vapor 

formation and acoustic enhancement

 Condensation is limited by interface 

area
» Thermal boundary layer surrounds vapor

Boiling

Condensation

1 mm

Condensation

Nozzle Ejection

1 mm
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Acoustically Controlled Condensation

Experimental Setup

 Vacuum pump sets the  

ambient pressure in test cell

 Middle plate separates 

boiling from condensation
» Nozzle geometry can be 

varied

» Bulk temperature of upper 

tank controlled with coil heat 

exchanger (not shown)

» Immersion heater creates 

vapor in lower tank

 Acoustic actuators:
» 1 kHz, placed to sides of 

nozzle

» 1.7 MHz, oriented either 

above or to side of nozzle

Tank

steam reservoir

d

vacuum pump

nozzle

steam reservoir

nozzle

steam reservoir

nozzle

steam reservoir

10.8 cm

Distilled water

0.15 – 1 atm
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nozzle

steam reservoir

Acoustically Enhanced Bubble Condensation 

Low Frequency (1 kHz)

Actuated

25 oC subcool 225 W

Continuous Actuation (Atmospheric Pressure)

To: acoustic actuation period  1 msec
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Video Presented Here Video Presented Here
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Boundary Layer Growth - kHz Condensation 

 Image processing of Schlieren 
images yields quantitative 
information on boundary layer 
growth

 Thermal boundary layer in 
baseline flow does not undergo 
appreciable growth

» Heat transfer occurs primarily 
through lower (and 
subsequently, inner) interface

 Acoustic actuation leads to 
nearly linear growth of 
boundary layer thickness

» No significant temporal 
dependence on acoustic 
actuation

 Thermal boundary layer in 
presence of acoustic actuation 
is on average 6.7 times thicker

» Up to 17 times thicker
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Natural Deformation-Induced Vapor Collapse 

nozzle

steam reservoir

 Surface tension pinch-off 

drives a liquid “spear” 

through the center of the 

vapor bubble to form a vapor 

torus that leads to rapid 

condensation.

 Schlieren imaging shows 

insignificant thermal 

gradients in fluid surrounding 

bubble.
» Inner “spear” enhances heat 

transfer

 This natural mechanism 

indicates that inducing such 

a liquid “spear” early in the 

bubble formation process 

can lead to accelerated 

condensation.

Video Presented Here
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Ultrasonic Liquid-Gas Interfacial Actuation

 f = 1.7 MHz
 lacoust = 0.9 mm; Dres = 2 mm

 lcapillary = O(mm)

» “Mist” droplets ejected, visible in 
video

 Cavitation and subsequent 
collapse generates additional 
droplets

» Larger-scale; not uniformly sized

 Acoustic impedance mismatch
» Zvapor/Zwater=1.8x10-4

» Surface deforms from acoustic 
pressure

 Deformed surface self-focuses 
acoustic intensity

1 cm

Video Presented Here
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nozzle

steam reservoir

Condensation Enhancement: Pulsed Ultrasound

6 oC subcool

20 W

20 ms pulse

White LightSchlieren Imaging
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h

 Pulsed actuation.
» Saves power

» Minimizes interference with vapor ejection

» Vapor ejection pressure remains unchanged

 Pulse actuation is synchronized to “natural” bubble 

formation.
» Bubble phase reference is obtained using a trigger laser 

beam at given height above nozzle

» Actuation wavefronts are monitored using Schlieren imaging

trigger

Significant savings in actuation power

Video Presented Here
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A*

t/Tb

Triggering laser diode

5 mm above nozzle

Q = 225 W

Tb = 50 ms

Subcooling = 25 oC

Axially-Aligned Pulsed Ultrasound Actuation

1

0.27

0 2 4

Base Vapor

Ultrasonic Vapor

nozzle

steam reservoir

 High-speed video image processing yields 

an estimate of total vapor domain as 

function of time.
» Subcooling and heater dissipation are 

invariant, leading to the relation between 

vapor domain and heat transfer coefficient.

𝑞𝑏𝑎𝑠𝑒 = 𝑈𝑏𝑎𝑠𝑒,𝑒𝑓𝑓𝐴𝑏𝑎𝑠𝑒,𝑒𝑓𝑓 𝑇𝑠𝑎𝑡 − 𝑇𝑠 =

𝑈𝐴𝑎𝑐𝑡,𝑒𝑓𝑓 𝑇𝑠𝑎𝑡 − 𝑇𝑠 = 𝑞𝑎𝑐𝑡

𝑦𝑖𝑒𝑙𝑑𝑠 𝑈𝑎𝑐𝑡,𝑒𝑓𝑓

𝑈𝑏𝑎𝑠𝑒,𝑒𝑓𝑓
=

𝐴𝑏𝑎𝑠𝑒,𝑒𝑓𝑓

𝐴𝑎𝑐𝑡,𝑒𝑓𝑓

 Vapor domain reduced by up to 73% using 20 ms actuation pulses.
» HTC increased by 270%

 Actuation “regularizes” time-periodic bubble formation.
» The base flow a new bubble is ejected while the earlier bubble collapses

» In the presence of actuation, bubble collapse is completed prior to ejection of the 

subsequent bubble
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Temporal Variation:

Heat Transfer Coefficient and Heat Rate

 Peak heat transfer 

coefficient occurs 

during toroidal breakup 

in the absence and 

presence of actuation.  
» Acoustic actuation leads 

to near-immediate 

doubling of HTC

 Peak heat rate occurs 

during pinch-off, torus 

formation, and toroidal 

breakup

 Non-spherical effects
» Lower peaks and higher 

troughs

120
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 High-resolution Schlieren imaging reveals formation of ultrasonically induced 

droplet ejection from spear.

 Required mass for complete phase change:

mdroplets = E/(cp∙DT) = [(Vo/vg)∙hfg]/(cp∙DT)

 mdroplets per pulse:  0.0207 gram/pulse.
» Can contribute up to 60% at low subcooling (8 oC), small bubbles or 45% at high 

subcooling (25 oC), large bubbles

nozzle

steam reservoir

h

trigger

Interfacial Disturbances by

Secondary Droplet Ejection

Pulsed Ultrasound ActuationBase Flow

Video Presented Here Video Presented Here
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Particle Image Velocimetry

 Fluorescent Particles and optical filter to reduce laser reflections

 Algorithmic masking to remove interface/ non-particle-laden flow

 Post processing: 10,000 fps flow fields temporally averaged over 0.5 ms (5 frames)
» Rightward of bubble is masked to remove interior and bubble shadow

8 oC subcool, 20 W, 20 ms pulse

Top View Side View

Optical Filter,

Camera

Cylindrical Lens

Spherical Lens
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Test Section

Low-Power 

Laser

trigger

Low-Power 
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y/do

Acoustically Actuated Vapor Bubbles
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Centerline Velocity
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High-Subcooling, High-Mass Flow Rate Vapor
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 Acoustic actuation is an effective method for 

controlling two-phase flows with heat transfer.  

» Interfacial coupling varies with actuation wavelength

 Low frequency, O(1 kHz); long wavelength = 1 m

 High frequency, O(1 MHz); short wavelength = O(1 mm) 

» The acoustic coupling forces liquid-vapor interfacial motion  

that affects vapor formation, advection, and condensation.

» Strongly enhances pool boiling heat transfer.

» Accelerates direct-contact vapor condensation.

General Conclusions
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Conclusions: Boiling 

 Ultrasonic actuation (short wavelength).

» Couples to vapor bubbles by a surface force.

» Vapor bubble nucleation, growth, and detachment are 

modified.

» CHF increases by 65%; surface temp. increases by 7 °C.

» Condensation increases above the boiling surface.

» Actuation may be turned on and off as needed without a 

drop in performance.  

 Textured surfaces with ultrasonic actuation.

» Microchannels alone increase CHF to 350 W/cm2.

 Ultrasound increases CHF to 460 W/cm2.

» Ultrasound reduces surface superheat by 7 °C (in contrast to 

smooth heater).
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Conclusions: Condensation

 O(1 kHz) acoustic actuation (long wavelength).
» Interfacial Faraday waves increase condensation in the bulk liquid.

» Interface motion induces a temporally-growing thermal boundary 

layer.  

» Condensation rate is increased both during growth and after 

advection, with increases of up to 425% in the time-averaged 

overall heat transfer coefficient.

» Importance of motion in inducing mixing implies effectiveness 

scales with surface displacement.
 Lower frequencies (1 kHz or below).

 Prior work used either extremely low (50 Hz) or high (20 kHz) 

frequencies, with smaller improvements in HTC.

 Ultrasonic acoustic actuation (short wavelength).
» Subcooled liquid jet protrudes into vapor bubble, significantly 

increasing vapor surface area and heat transfer coefficient.

» Formation of toroidal volume leads to rapid bubble collapse.

» Pulsed actuation causes up to a 73% reduction in vapor extent.


